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Rotating convection in cylindrical containers is a canonical problem in fluid dynamics,
in which a variety of simplifying assumptions have been used in order to allow for
low-dimensional models or linear stability analysis from trivial basic states. An
aspect of the problem that has received only limited attention is the influence of the
centrifugal force, because it makes it difficult or even impossible to implement the
aforementioned approaches. In this study, the mutual interplay between the three
forces of the problem, Coriolis, gravitational and centrifugal buoyancy, is examined
via direct numerical simulation of the Navier–Stokes equations in a parameter regime
where the three forces are of comparable strengths in a cylindrical container with
the radius equal to the depth so that wall effects are also of order one. Two steady
axisymmetric basic states exist in this regime, and the nonlinear dynamics of the
solutions bifurcating from them is explored in detail. A variety of bifurcated solutions
and several codimension-two bifurcation points acting as organizing centres for the
dynamics have been found. A main result is that the flow has simple dynamics for
either weak heating or large centrifugal buoyancy. Reducing the strength of centrifugal
buoyancy leads to subcritical bifurcations, and as a result linear stability is of limited
utility, and direct numerical simulations or laboratory experiments are the only way
to establish the connections between the different solutions and their organizing
centres, which result from the competition between the three forces. Centrifugal
effects primarily lead to the axisymmetrization of the flow and a reduction in the heat
flux.

1. Introduction
One of the most fascinating aspects of rotating convection is the observation of

spatio-temporal chaos essentially at the onset of convection as the Rayleigh number
(non-dimensional imposed vertical temperature gradient) is increased (Krishnamurti
1971; Busse & Heikes 1980; Niemela & Donnelly 1986; Hu, Ecke & Ahlers 1997).
This experimentally observed spatio-temporal chaos has been associated with the
Küppers–Lortz (KL) instability (Küppers & Lortz 1969; Küppers 1970; Clever &
Busse 1979). The KL instability occurs when the system is rotating faster than a
critical level; convection rolls in a horizontally unbounded layer are unstable to rolls
oriented at about 60◦. The KL instability is formally found in an unbounded rotating
system in the limit of zero centrifugal force. Experiments, of course, are conducted
in bounded containers and most employ large horizontal-to-vertical aspect ratios.
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In the experiments, the switching in roll orientation occurs in patches throughout
the layer and is characterized by both spatial and temporal irregularity (Hu et al.
1998). Reduced equation models have reproduced many aspects of the experimental
observations (e.g. Busse & Heikes 1980; Tu & Cross 1992; Ponty, Passot & Sulem
1997), but for the most part these models are not derived directly from the governing
hydrodynamic equations, Navier–Stokes–Boussinesq equations, and their dynamics
can only be qualitatively compared with the experimental dynamics.

An aspect of the problem that has received only limited attention is the influence of
the centrifugal force on the KL dynamics. One reason for this is that it is difficult (if
not impossible) to derive an amplitude equation from the Boussinesq equations
with the centrifugal force included, since this makes the Boussinesq equations
inhomogeneous (Scheel 2007). Centrifugal buoyancy drives a large-scale circulation
in which the cool denser fluid is centrifuged radially outwards and the warm less-
dense fluid is centrifuged radially inwards (Barcilon & Pedlosky 1967; Homsy &
Hudson 1969; Koschmieder 1993; Hart 2000). This large-scale circulation exists for
any non-zero difference in temperature between the top and bottom plate. Neglecting
the centrifugal buoyancy allows a straightforward linear stability analysis for the
onset of convection from the conduction state; Chandrasekhar (1961) provides a
comprehensive account of this for a horizontally unbounded fluid layer. However, the
centrifugal buoyancy destroys the horizontal translation invariance that is inherent
in the unbounded theoretical treatments of the problem, as well as the so-called
Boussinesq reflection symmetry about the half-height of the layer (these idealizations
neglecting centrifugal buoyancy are pervasive in models, e.g. Portegies et al. 2008). In
one of the early experimental studies of rotating convection, Rossby (1967) states:
‘When the apparatus is rotated, a radial acceleration, which increases with radius,
is established. . . . However, since this radial acceleration destroys the horizontal
uniformity, which is a basic assumption in the Bénard convection problem, it is
essential that its influence be minimized. Obviously the radial acceleration cannot be
eliminated entirely’.

Although most experimental studies are designed to keep the centrifugal force small
compared to the gravitational force (e.g. Ning & Ecke 1993; Zhong, Ecke & Steinberg
1993; Bodenschatz, Pesch & Ahlers 2000), the experimental and numerical results of
Becker et al. (2006) suggest that the centrifugal force may play a larger role than
previously thought. While Becker et al. were able to compute a few isolated solutions
with F �= 0 in systems with large radius-to-depth aspect ratios of the order of 20, such
computations are prohibitively expensive to conduct an extensive nonlinear analysis
of the dynamics.

The ratio of centrifugal force to gravitational buoyancy is measured by the
Froude number F , which is the reciprocal of a Richardson number (non-dimensional
governing parameters are defined in § 2). In the limit of zero centrifugal buoyancy,
Goldstein et al. (1993, 1994) studied the linear stability of the trivial basic state
in finite cylinders. The linear stability of the non-trivial basic state incorporating
centrifugal buoyancy in a finite cylinder has been analysed in the asymptotic limit
of infinite Coriolis force and steady onset (Homsy & Hudson 1971). The linear
stability analysis for finite values of the parameters and allowing for unsteady non-
axisymmetric modes with radius-to-depth aspect ratio equal to one reveals that even
for modest F ∼ 0.3, the system admits numerous solution states that are heavily
influenced by the centrifugal buoyancy (Marques et al. 2007). That analysis shows
that for F sufficiently large, F � 0.4, a state of axisymmetric large-scale circulation
is stable and loses stability to a variety of three-dimensional modes as F is reduced.
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In the limit of F → 0, the flow at sufficiently large Rayleigh numbers is complicated
(a comprehensive overview of those linear results are presented in § 3, in order
to put into context the new nonlinear three-dimensional dynamics presented in this
paper). The nonlinear dynamics associated with the competition between gravitational
buoyancy, Coriolis force and centrifugal buoyancy have not been systematically
investigated previously. Linear stability analysis (Marques et al. 2007) and nonlinear
axisymmetric simulations (Lopez, Rubio & Marques 2006) indicate that for Froude
numbers as small as 0.05, the centrifugal force plays an important role leading to
qualitative changes from the F = 0 case. The ratio of centrifugal force to gravitational
buoyancy is measured by the Froude number, and the ratio of gravitational buoyancy
to the Coriolis force is given by the thermal Rossby number (see § 2). For the most
part, studies of rotating convection have finite Rossby numbers, but either the Froude
number (ignoring centrifugal buoyancy) or the Richardson number is set to zero. The
zero Richardson number has been studied extensively in the context of astrophysical
convection (e.g. Busse 1970; Busse & Carrigan 1974; Busse 1994; Busse et al. 1998).

In this paper, the mutual interplay between the three forces – gravitational
buoyancy, Coriolis and centrifugal – is examined via direct numerical simulation
of the Navier–Stokes–Boussinesq equations. Section 2 describes the set-up of the
problem and the numerical methods used. Section 3 summarizes the previous results
in this problem of rotating convection in a cylinder of aspect ratio equal to one
(Marques et al. 2007), where the two stable axisymmetric basic states (the so-called
centrifugal and downwelling branches) and their linear stability were computed and
analysed. In § 4 and § 5, the nonlinear dynamics of the solutions bifurcating from the
centrifugal and downwelling branches are analysed. A variety of codimension-two
bifurcation points is found. These points act as organizing centres for the dynamics.
Section 6 summarizes the new nonlinear results and provides a global picture of all
the solutions and their interacting dynamics. A main result is that the flow has simple
dynamics at either low Rayleigh numbers (limit of gravitational buoyancy going to
zero) or at large Froude numbers (limit of centrifugal buoyancy going to infinity),
where the flow becomes steady and axisymmetric. With diminishing Froude number
there is a cascade of subcritical bifurcations. In this parameter regime, all three forces
are of comparable magnitude, and their competition and interaction leads to rich
dynamics.

2. Governing equations and numerical scheme
Consider the flow in a circular cylinder of radius r0 and depth d , rotating at a

constant rate ω rad s−1. The top endwall is maintained at a constant temperature
T0 − 0.5�T and the bottom endwall at a constant temperature T0 + 0.5�T , where T0

is the mean temperature and �T is the temperature difference between the endwalls.
There are five non-dimensional independent parameters:

Rayleigh number R = αgd3�T/(κν),

Coriolis number Ω = ωd2/ν,

Froude number F = ω2r0/g,

Prandtl number σ = ν/κ,

Aspect ratio γ = r0/d,

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.1)

where α is the coefficient of volume expansion, g is the gravitational acceleration, κ

is the thermal diffusivity and ν is the kinematic viscosity.
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With the problem depending on five non-dimensional parameters, a comprehensive
parametric analysis is overwhelming. We have fixed γ = 1 to avoid very large azimuthal
wavenumber modes, and σ = 7.0 which essentially corresponds to water near room
temperature. We wish to analyse the relative importance of the gravitational buoyancy
(characterized by R) and the centrifugal buoyancy (characterized by F ) in a rotating
system (the Coriolis acceleration being characterized by Ω). In a physical experiment,
Ω and F vary simultaneously with the rotation frequency ω and either both are
zero or both are different from zero. However, the classical treatment of the problem
has been to take F = 0 and Ω �= 0, corresponding to the limit g → ∞. Here, we fix
Ω = 100, and consider variations in R and F . In many studies of rotating convection,
the Coriolis force is characterized by the Taylor number, T a =2Ω2, which for Ω =100
gives T a = 2 × 104.

Note that Ri = 1/F is essentially a rotational Richardson number, giving the
ratio of the gravitational potential energy to the rotational kinetic energy, and
Ro = (R/2σΩ2)0.5 is a thermal Rossby number (Julien et al. 1996), giving the ratio of
gravitational buoyancy to the Coriolis force squared. In the present study, Ro ∼ O(1)
and Ri ∼ O(1), and so the three primary forces active in rotating convection are
of comparable magnitudes and their nonlinear interactions and competition can be
investigated.

The governing equations will be written in the rotating frame of reference, using
the Boussinesq approximation: all fluid properties are considered constant, except for
the density in the gravitational and centrifugal buoyancy terms. The validity of the
Boussinesq approximation requires α�T � 1. Expressing this value in terms of the
non-dimensional parameters of the problem we obtain

α�T =
RF

σΩ2γ
=

R

σGa
, Ga =

gd3

ν2
, (2.2)

where Ga is the Galilei number of the fluid. For the values used in this study,
α�T � 10−1. For example, in the middle of the parameter region where Coriolis,
centrifugal and gravitational buoyancy are of comparable strength, Ra =17 000
and F = 0.33 (see figure 21 for example), we find α�T = 0.08. α�T can be made
smaller by using larger Prandtl numbers, or increasing the Galilei number (for
example, using larger convection cells or fluids with smaller kinematic viscosities), or
both.

The governing equations, non-dimensionalized using d as the length scale, d2/κ as
the time scale, and �T as the temperature scale, are:

(∂t + u · ∇)u = −∇p + σ∇2u + σRΘẑ + 2σΩu × ẑ − σFR
γ

(Θ − z)r, (2.3)

(∂t + u · ∇)Θ = w + ∇2Θ, ∇ · u = 0. (2.4)

where u is the velocity field in the rotating frame, (u, v, w) are the components of u
in cylindrical coordinates (r, θ, z), p is the kinematic pressure (including gravitational
and centrifugal contributions), ẑ the unit vector in the vertical direction z and r is the
radial vector in cylindrical coordinates. Instead of the non-dimensional temperature
T , we have used the temperature deviation Θ with respect to the conductive profile,
T = T0/�T −z+Θ , as is customary in many thermal convection studies. The boundary
conditions for u and Θ are:

r = γ : Θr = u = v = w = 0, (2.5)

z = ±1/2: Θ = u = v = w = 0. (2.6)
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Figure 1. Convergence of the spectral coefficients (2.7) of the radial velocity using the infinity
norm. The flow corresponds to a quasi-periodic solution at R = 19.500 and F = 0.30, computed
with L = 36 Chebyshev radial points, M =18 Fourier modes and N = 36 Chebyshev axial
points.

The governing equations are invariant under rotations around the axis of
the cylinder. If the Froude number is zero, the governing equations are
also invariant to a reflection Kz about the half-height z = 0, whose action
is Kz(u, v, w, Θ, p)(r, θ, z)= (u, v, −w, −Θ, p)(r, θ, −z). This so-called Boussinesq
symmetry is broken by the centrifugal term, and plays only a role when F is zero or
very small.

The governing equations have been solved using the second-order time-splitting
method proposed in Hughes & Randriamampianina (1998) combined with a
pseudo-spectral method for the spatial discretization, utilizing a Galerkin–Fourier
expansion in the azimuthal coordinate θ and Chebyshev collocation in x = r/γ and
y = 2z:

F (r, θ, z) =

L∑
l=0

N∑
n=0

M∑
m=−M

al,n,mTl(x)Tn(y)eimθ . (2.7)

The velocity components, temperature and pressure are the real or imaginary parts of
F . The radial dependence of the variables is approximated by Chebyshev expansions
with appropriate parities of their azimuthal Fourier component (Fornberg 1998). To
avoid including the origin in the collocation mesh, an odd number of Gauss–Lobatto
points in r is used and the equations are solved only in the interval r ∈ (0, γ ].
Following Orszag & Patera (1983), we have used the combinations u+ = u + iv and
u− = u−iv in order to decouple the linear diffusion terms in the momentum equations.
For each Fourier mode, the resulting Helmholtz equations for Θ , w, u+ and u− have
been solved using a diagonalization technique in the two coordinates r and z. The
imposed parity of the Fourier modes guarantees the regularity conditions at the origin
needed to solve the Helmholtz equations (Mercader, Net & Falqués 1991). We have
used L = N =36 spectral modes in r and z, M =18 in θ and a time step dt =2 × 10−5

thermal time units in all computations. We have checked the spectral convergence of
the code using the infinity norm of the spectral coefficients of the computed solutions,
defined as ||al ||∞ = maxn,m |al,n,m| for the radial direction, and analogously for the
axial and azimuthal directions. Figure 1 shows ‖aj ‖∞, with j = l, n, m, of the radial
velocity u for a quasi-periodic solution at R =19 500 and F = 0.30, one of the most
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complex solutions obtained. The trailing coefficients of the spectral expansion (2.7)
are at least five orders of magnitude smaller than the leading coefficients.

To describe the state of the system, we use the mid-cylinder temperature,

Θm = Θ(r = 0, θ = 0, z = 0), (2.8)

as it discriminates well between the different branches of solutions. Another useful
set of characteristics are the energies (L2-norms) of the azimuthal Fourier modes of
a given solution,

Em =
1

2

∫ z=1/2

z=−1/2

∫ r=γ

r=0

um · u∗
m r dr dz , (2.9)

where um is the mth Fourier mode of the velocity field and u∗
m is its complex

conjugate. They aid in monitoring the relative influence of, and switching between,
different modes during temporal evolution. To describe the heat transfer properties
of a solution we use the Nusselt number, the ratio between the heat transfer of the
solution considered and the heat transfer of the conductive state, both through the
top lid. It is given by

Nu = − 1

πγ 2

∫ r=γ

r=0

∫ θ=2π

θ=0

∂T

∂z

∣∣∣
z=0.5

r dr dθ . (2.10)

Time-dependent solutions are also characterized by their frequencies. When a steady
solution undergoes a Hopf bifurcation to a rotating wave with azimuthal wavenumber
m, the imaginary part of the critical eigenvalue is the Hopf frequency ωH . This Hopf
frequency is closely related to the precession frequency ωp of the rotating wave,
defined as the angle through which the pattern rotates per unit time: ωp = ωH/m. The
dependence of any dynamic variable of a rotating wave on θ and t is of the form
f (θ − ωpt). When this variable is Fourier expanded in θ , the phase φm in the mth
Fourier mode changes by an amount �φm = mωp�t in a time �t . By computing this
phase shift at every (r, z) point of the computational domain, we have a large set
of ωp values. The mean of these values is the ωp value we accept, and the variance
σωp

is a measure of how close our state is to a rotating wave. This method can
be applied to any time-dependent solution, giving different precession frequencies for
every Fourier mode, with the corresponding variance. These values have proved useful
in the analysis of quasi-periodic solutions.

2.1. Bifurcation curves

In the present study a large variety of nonlinear solutions and bifurcation curves
between them have been computed; they are listed in the Appendix. The steady
axisymmetric states and their bifurcation curves were computed in Marques et al.
(2007) using arclength continuation and linear stability analysis (Lopez, Marques &
Sanchez 2001; Sanchez, Marques & Lopez 2002). The bifurcated solutions, which are
time periodic, have been computed by time evolution; by restricting the computations
to appropriate subspaces, it has also been possible to compute some of their
unstables branches. These periodic solutions undergo secondary bifurcations; when
the critical eigenvectors belong to an orthogonal Fourier subspace, the eigenvalues and
eigenvectors have been computed with the time evolution code, and the critical point is
obtained by bisection and linear interpolation. This method is more efficient than using
continuation and linear stability analysis of periodic solutions (via Krylov methods),
which is not very practical for large partial differential equation (PDE) systems
because of the difficulties of having an efficient preconditioner (Barkley, Gomes &
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Henderson 2002), and because these methods demand higher precisions (increasing
the number of spectral modes and the computational cost) than time evolution
(Barkley et al. 2002; Nore et al. 2003). When the bifurcations are supercritical (Hopf
and pitchfork type) it is also possible to locate the bifurcation point using the normal
form estimate of the amplitude of the bifurcated solutions, fitting their amplitudes to√

|R − Rcrit |. We have used all of these techniques when possible, and used results
from time evolution and dynamical systems theory when nothing else was available
and efficient. For example, to our knowledge, there are no available continuation and
linear stability methods for quasi-periodic solutions of PDE with 2 × 105 degrees of
freedom, as is the case in the present problem.

3. Axisymmetric solutions manifold
The axisymmetric solutions and their stability to arbitrary perturbations were

computed and analysed in Marques et al. (2007). In this section, we summarize
the main results to put into context the new nonlinear three-dimensional dynamics
discussed in this paper.

In the absence of centrifugal buoyancy (F =0), the basic state is the conductive state
where the fluid is in solid-body rotation with a linear vertical temperature profile:
Θ = 0 and u =0. For non-zero Froude number, the basic state is more complex;
for any non-zero temperature difference, R �= 0, the cool fluid near the top of the
cylinder is centrifuged radially outwards while the warm fluid close to the bottom
is centrifuged radially inwards, generating a large-scale circulation and a nonlinear
vertical temperature profile. Note that in the convectively stable situation (R < 0),
with F �= 0, the centrifugal buoyancy also drives a similar large-scale circulation, but
with the sense of the circulation reversed; the warm fluid near the top of the cylinder
is centrifuged radially inwards while the cool fluid close to the bottom is centrifuged
radially outwards (Brummell, Hart & Lopez 2000). For the aspect ratio considered,
γ = 1, a single axisymmetric recirculation cell results, whose strength increases with
increasing Froude number.

Figure 2(a) shows isotherms of Θ , plotted in a meridional plane and in a horizontal
section at mid-height for a steady axisymmetric centrifugal solution C0, at R = 2 × 104

and F = 0.4. This solution connects smoothly with the zero solution at R = 0, and is
stable over a wide region in parameter space (the large light-grey shaded region in
figure 3). As well as C0, there are many additional axisymmetric steady solutions; for
example, up to seven different such solutions have been found at R = 2.0 × 104 and
F = 0.1 (Marques et al. 2007). However, most of these solutions are unstable, and
there is only one additional stable steady axisymmetric solution (for some parameter
values). An example is plotted in figure 2(b) at R = 1.6 × 104 and F = 0.4. It is very
similar to C0, except that it has a downwelling cold plume on the axis; we call this
branch the downwelling branch D0. The D0 solutions are only stable in the narrow
triangular region depicted in figure 3.

The linear stability of the C0 and D0 solutions has been determined in Marques
et al. (2007), and figure 3 shows the corresponding bifurcation curves delimiting
the stability regions of the two branches. The centrifugal branch becomes unstable
at Hopf bifurcations to rotating waves with azimuthal wavenumbers m =3 (for
moderate Rayleigh numbers, R � 2.010 × 104) and m = 2 (for larger Rayleigh numbers,
R � 2.010 × 104). At the codimension-two point (R, F ) ≈ (2.010 × 104, 0.3000), C0
becomes simultaneously unstable to both rotating waves; this is a double-Hopf
bifurcation dH23. D0 is born at a saddle-node bifurcation curve, the long left-hand
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(a) C0 (b) D0

Figure 2. Contour plots of temperature deviation Θ on a meridional plane (top row) and at
mid-height (bottom row), corresponding to (a) the centrifugal branch C0 at R = 2.0 × 104 and
(b) the downwelling branch D0 at R = 1.6 × 104, both at F = 0.4. There are eight positive and
eight negative contour levels, in the range Θ ∈ [−0.4, 0.4], with black being the most negative
and white the largest positive in the grey scale.
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Figure 3. Regime diagram for the stable axisymmetric solutions; in the white region only
three-dimensional solutions are stable, in the large light-grey shaded region only C0 is stable,
in the small rectangular region only D0 is stable and in the triangular region both C0 and
D0 are stable. The C0 solution plotted in figure 2(a) is at the × symbol and the D0 solution
plotted in figure 2(b) is at the + symbol.

side of the narrow triangle in figure 3. The downwelling branch becomes unstable
at Hopf bifurcations to rotating waves with azimuthal wavenumbers m =3 (for
moderate Rayleigh numbers, R � 1.572 × 104) and m =1 (for larger Rayleigh numbers,
R � 1.572 × 104). The two rotating waves bifurcate simultaneously at the double-Hopf
bifurcation dH13 at (R, F ) ≈ (1.572 × 104, 0.3328). The Hopf bifurcation curves meet
the saddle-node curve at two fold-Hopf codimension-two bifurcations, FH1 and FH3,
at (R, F ) ≈ (1.852 × 104, 0.5693) and (R, F ) ≈ (1.465 × 104, 0.3430), respectively. The
eigenmodes corresponding to the Hopf bifurcations are wall modes, i.e. the maximum
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Figure 4. Bifurcations of the centrifugal branch C0, showing the Hopf bifurcation to the
rotating wave C3, H 3

C0, which is supercritical for small R up to the Bautin point B where it
becomes subcritical and from where a fold bifurcation of C3, Fu

C3, emanates. The C3 solution
manifold is folded at a cusp point Cusp, from which two fold bifurcation curves emanate, FD3

and F l
C3. The symbols on the two horizontal dashed line at F =0.32 and F = 0.30 are the

locations of the various states illustrated in figure 5.

values of the temperature and velocity perturbations are located near the sidewall.
There is one exception, the m =1 Hopf bifurcation of D0 (the curve connecting FH1

and dH13). In this case the eigenvector has the maximum values near the axis, it is
a precession mode of the downwelling central plume (see Marques et al. 2007). The
details of the various three-dimensional flow structures are presented below along
with the analyses of the bifurcated states and their secondary bifurcations.

4. Bifurcations of the centrifugal branch
As F is reduced and R is increased, the axisymmetric solutions lose stability to

three-dimensional bifurcations in a myriad of ways (glossaries of the solution states
and the associated bifurcations are provided in the Appendix). In the following
sections, these are treated individually and described in detail, and finally a global
picture of how they are inter-connected is presented.

4.1. C3 manifold of solutions

At low Rayleigh number, the centrifugal branch C0 becomes unstable at a
supercritical Hopf bifurcation to a rotating wave C3 with azimuthal wavenumber
m = 3. The Hopf bifurcation curve H 3

C0 is nearly independent of F for small F ,
but for large F the centrifugal effects become important, and the Hopf curve bends
towards larger R. At (R, F ) ≈ (14157, 0.3684), the Hopf bifurcation H 3

C0 becomes
subcritical at a codimension-two degenerate Hopf bifurcation, called a Bautin
bifurcation B (Kuznetsov 2004) which is also known as a generalized Hopf bifurcation
(Guckenheimer & Holmes 1997). The most salient feature of this bifurcation is the
existence of an unstable C3 when the bifurcation is subcritical, that becomes stable
at a saddle-node bifurcation curve F u

C3. This curve meets the Hopf bifurcation curve
H 3

C0 tangentially at the Bautin point B . The loci of the various bifurcations in
(R, F ) space are shown in figure 4. On decreasing F , the rotating wave solution
C3, born at the saddle-node bifurcation curve F u

C3, loses stability at another saddle-
node bifurcation curve F l

C3. Between the two saddle-node curves, C3 is stable. The
saddle-node bifurcation curve F l

C3 originates at a cusp bifurcation Cusp located
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Figure 5. Contours of temperature deviation Θ at mid-height z = 0; there are eight positive
and eight negative contour levels, in the range Θ ∈ [−0.3, 0.3], with black being the most
negative and white the largest positive in the grey scale. Part (a) corresponds to solutions on
the C3 branch (top row) and the D3 branch (bottom row) at F = 0.32 and R as indicated,
while part (b) corresponds to a smooth transition from C3 to D3 at F =0.30 as R is varied
as indicated. The loci of these solution in (R,F ) space are indicated in figure 4.

at (R, F ) ≈ (13650, 0.31). The variation in the flow structure of C3 solutions in a
neighbourhood of the cusp bifurcation is shown in figure 5. The first two rows
(figure 5a) show the upper and lower solution branches of the cusp at F =0.32. There
is coexistence inside the horn region originating at the cusp point. The cusp and the
two fold bifurcations emanating from it, FD3 and F l

C3, are also shown in figure 4,
where the loci of the solutions on the upper branch are shown as bullets •. These are
typical C3 states, with a wide hot plume rising in the middle of the cylinder. The loci
of solutions on the lower branch are shown as circles ◦ in figure 4, and close to the
sidewall they are identical to the C3 states, but they have an additional downwelling
cold plume in the centre of the cell. These states are identical to the states bifurcating
from the downwelling axisymmetric state D0, and we call them D3. Their relationship
with the bifurcations of the D0 branch will be analysed in § 5. For Froude numbers
below the cusp point, there is no hysteresis but only a single branch undergoing a
smooth transition between the C3 and D3 states. This smooth transition as R is
increased is illustrated in figure 5(b) at F =0.3, and their corresponding loci are also
shown in figure 4 as bullets •.

The formation of the cusp bifurcation is illustrated in figure 6(a) showing how the
mid-cylinder temperature Θm for C2 varies with R for different F . Below the cusp
(F < 0.31), there is a smooth transition between C3 (relatively warm Θm) and D3
(relatively cool Θm) as R is increased. At F = 0.31, the Θm curve develops a vertical
slope, and for F > 0.31 the curve is multivalued; only the two stable branches of
each curve are shown. The end points of these curves are saddle-node bifurcations,
their loci in (R, F ) space are illustrated in figure 4 as the fold bifurcation curves F l

C3

(where C3 becomes unstable) and FD3 (where D3 becomes unstable). The fate of
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Figure 6. Rotating wave solutions C3, characterized by (a) the mid-cylinder temperature Θm

and (b) the precession frequency ωp , plotted as functions of R, for F ∈ [0.25, 0.37] in steps of
0.01. Computed solutions are indicated by symbols • and ◦.

the FD3 is associated to the bifurcations of the D0 branch, and will be explored in
§ 5. Figure 6(b) shows the precession frequency ωp as a function of R for different
F values; ωp is retrograde and decreases in absolute value when R increases. These
curves also illustrate the formation of the Cusp bifurcation.

4.2. C2 manifold of solutions

At large R, C0 becomes unstable to a rotating wave C2 with azimuthal wavenumber
m = 2, rather than the m = 3 rotating wave C3 at low R, as F is reduced. The
exchange of critical azimuthal mode from 3 to 2 occurs at a double-Hopf point dH23

at (R, F ) ≈ (20 098, 0.30002). At a double-Hopf bifurcation, two different periodic
solutions and a quasi-periodic mixed mode bifurcate simultaneously. Additional more
complicated solutions may also appear, including three-torus heteroclinic connections
and chaotic horns, depending on the particulars of the problem (Kuznetsov 2004).
At the double-Hopf bifurcation dH23, the two Hopf bifurcation curves H 2

C0 and H 3
C0

that meet at dH23 are subcritical Hopf bifurcations. As a result, in a neighbourhood
of dH23 where normal form analysis is valid, the only stable state is C0 (stable
for F above the two Hopf curves, see figure 3). In fact, what we observe in a
neighbourhood of dH23 are the two rotating waves C2 and C3 that coexist and are
stable. They become stable at saddle-node bifurcation curves, F u

C3 and FC2, due to the
subcritical nature of the Hopf bifurcations. These states are far away in phase space
from the neighbourhood of the double-Hopf dH23 where the normal form analysis is
valid.

The C2 states exist in a wide region of (R, F ) space below the saddle-node
bifurcation curve FC2, as shown in figure 7. At low R, along the curve labelled
sHC2 in figure 7, the rotating waves C2 undergo a secondary Hopf bifurcation sHC2

where they lose stability. This secondary Hopf bifurcation is subcritical and there
are no stable states in the neighbourhood of sHC2 (other than C2 on the high-R
side of the curve). Following the bifurcation, evolutions initiated near the unstable
C2 state evolve to the (remote in phase space) D3 states, described in § 4.1 and in
figure 4.
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Figure 7. Bifurcations of the rotating wave C2, showing the double-Hopf point dH23 where
the two Hopf bifurcation curves H 2

C0 and H 3
C0 meet, the fold bifurcation curve FC2 and the

secondary Hopf bifurcation curve sHC2 that meet at the fold-Hopf point FHC2. The symbols
on the two dashed lines are the loci of the various C2 states shown in figure 8.

(14 300, 0.30) (14 500, 0.30) (15 000, 0.30) (16 000, 0.30) (17 000, 0.30)(a)

(b) (18 000, 0.30) (18 000, 0.32) (18 000, 0.33) (18 000, 0.34) (18 000, 0.35)

Figure 8. Solutions on the C2 branch. Contours of temperature deviation Θ at mid-height
z = 0; there are 8 positive and 10 negative contour levels, in the range Θ ∈ [−0.3, 0.3]. Part
(a) corresponds to solutions at F = 0.30 and R as indicated, while part (b) corresponds to
solutions at R =18 000 as F is varied as indicated.

The structure of the rotating waves C2 is shown in figure 8. The first row
corresponds to the symbols in the horizontal dashed line at F =0.30 in figure 7,
starting at the secondary Hopf curve sHC2. The second row corresponds to the
symbols in the vertical dashed line at R = 18000 in figure 7, terminating at the
saddle-node curve FC2. The structure of the C2 solutions does not change very
much in their region of stability; the most noticeable change being the shape of the
wide central hot plume that becomes more elongated on approaching the secondary
Hopf curve sHC2, while becoming more circular on approaching the saddle-node
curve FC2.

The codimension-two fold-Hopf bifurcation admits distinct dynamic scenarios. A
comprehensive description of these scenarios is given in Kuznetsov (2004). The FHC2

bifurcation we have found belongs to the simplest case in which there exists only
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and (b) the precession frequency ωp , plotted as functions of R, for F ∈ [0.30, 0.36] in steps of
0.02. Computed solutions are indicated by the symbols •.

one stable state, a fixed point born at the saddle-node curve FC2 that becomes
unstable at the Hopf curve sHC2. Although in our problem C2 is a periodic solution
and the fold-Hopf normal-form theory applies to fixed points, rotating waves are
relative equilibria (fixed points in the appropriate rotating reference frame) and their
normal-form analysis is identical to that of fixed points.

Figure 9(a) shows how the mid-cylinder temperature Θm for C2 varies with R for
different F . Θm increases with increasing R, tending to saturate at high-R values.
Figure 9(b) shows the precession frequency ωp as a function of R for different F

values; it is retrograde with respect to the rotation of the cylinder, and increases
almost linearly with R in the parameter range considered. For high-F values, the C2
solution is born at the saddle-node bifurcation curve FC2, and ωp departs from the
linear behaviour close to this bifurcation.

Figure 10 summarizes the bifurcations of the centrifugal branch C0 analysed in
the previous sections. The rotating waves C2 and C3 coexist and are stable in a wide
parameter region bounded by the curves F u

C3, FC2 and F l
C3. They also coexist with the

stable steady state C0 above the two Hopf curves emerging from dH23. Which one of
these three states is observed in an experiment or in a numerical simulation depends
on initial conditions and the path followed in parameter space.

5. Bifurcations of the downwelling branch
5.1. D3 Manifold of solutions

At low Rayleigh numbers R � 1.572 × 104, the downwelling branch D0 becomes
unstable in a supercritical Hopf bifurcation to a rotating wave D3 with azimuthal
wavenumber m =3. The Hopf bifurcation curve H 3

D0 exists in a small parameter
region, and is limited by two codimension-two bifurcations: the fold-Hopf bifurcation
FH3, where the Hopf bifurcation curve H 3

D0 meets the saddle-node curve FD0 (where
the axisymmetric downwelling state D0 is born), and the double-Hopf point dH13, as
shown in figure 11. The D3 solutions have already been found at low Froude number,
where the C3 branch undergoes a smooth transition to D3 with increasing R, as
illustrated in figure 5(b) at F = 0.30. For larger Froude number, C3 and D3 coexist
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dH23. These Hopf curves are subcritical to the right of the Bautin point B . C3 develops a
central cold plume at low F , evolving into a D3 rotating wave; this is organized by the Cusp
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meets FC2 at the codimension-two FHC2 point. The codimension-two bifurcation points are
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Figure 11. Bifurcations of the rotating wave D3, born at the Hopf curve HD3. At low R
disappears in the fold bifurcation FD3, while at large R becomes unstable in the secondary
Hopf sHD3, where a quasi-periodic solution emerges. At low R and F , below the Cusp point,
D3 smoothly becomes a C3 state.

in a hysteresis region close to the cusp bifurcation, also illustrated in figure 5(a) at
F =0.32.

The fold-Hopf codimension-two bifurcation FH3 (see figure 11) is the collision of
a saddle-node bifurcation (FD0) and a Hopf bifurcation (H 3

D0). As described in many
standard texts on dynamical systems (Guckenheimer & Holmes 1997; Kuznetsov
2004), from a fold-Hopf point emerges a secondary Hopf bifurcation curve where
the periodic solution (D3 in our case) looses stability in a supercritical bifurcation.
However, in our problem the D3 state disappears in a fold bifurcation of cycles
FD3. This means that the supercritical secondary Hopf emerging from FH3 becomes
subcritical very close to the fold-Hopf point. Consequently, in a neighbourhood of
FH3 the rotating wave D3 has four eigenvalues with real part very close to zero: two
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where D1 is born, and the fold curve FD1 and the secondary Hopf curve sHD1 where D1
becomes unstable. These curves meet at the codimension-two points FH1 and dH13. The
symbols on the dashed line are the loci of the D1 states shown in figure 13.

zero eigenvalues associated to the two saddle-node curves FD0 and FD3, and the pair of
complex conjugates eigenvalues associated to the Hopf curve H 3

D0. The presence of so
many eigenvalues very close to zero makes it almost impossible to compute solutions
very close to the fold-Hopf point due to the extremely slow decay of transients. We
have represented the unexplored connection of the saddle-node curve FD3 with the
fold-Hopf point FH3 as a dotted line.

Increasing R at constant F , the rotating waves D3 undergo a supercritical secondary
Hopf bifurcation along the curve labelled sHD3 in figure 11. This curve emerges from
the double-Hopf point dH13. A description of the double-Hopf bifurcation and the
quasi-periodic states emerging at the secondary Hopf bifurcation is presented in
§ 5.3.

5.2. D1 Manifold of solutions

For Rayleigh numbers R � 1.572 × 104, the downwelling branch D0 becomes
unstable in a supercritical Hopf bifurcation to a rotating wave D1 with azimuthal
wavenumber m =1. The Hopf bifurcation curve H 1

D0 is bounded by two codimension-
two bifurcations: the fold-Hopf bifurcation FH1, where the Hopf bifurcation curve
H 1

D0 meets the saddle-node curve FD0 where the axisymmetric downwelling state
D0 is born, and the double-Hopf point dH13, as shown in figure 12. The previous
rotating waves obtained at Hopf bifurcations from the axisymmetric base states
C0 and D0 are all wall modes (C2, C3 and D3) with the perturbation forming
alternating hot and cold plumes near the sidewall. The rotating wave D1 born at H 1

D0

is associated with a different physical mechanism: it is a jet instability of the central
cold plume characteristic of the downwelling axisymmetric state D0. This central
plume is displaced from the centre of the cell, and precesses around the cylinder axis.
The structure of the D1 solutions can be seen in figure 13, showing four solutions
along the path F = 0.35, indicated as • in figure 12. The first solution, at R = 1.6 × 104,
is very close to the supercritical Hopf H 1

D0, the displacement of the central plume is
small and the flow is close to axisymmetric. The displacement of the plume and the
non-axisymmetric nature of D1 increases with increasing R.

Figure 14(a) shows the mid-cylinder temperature Θm and the precession frequency
ωp on the D1 branch, plotted as a function of R, for different Froude numbers F .
The temperature in the centre of the cell increases with R because as the amplitude
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(a) R = 1.6 × 104 (b) R = 1.8 × 104 (c) R = 2.0 × 104 (d ) R = 2.2 × 104

Figure 13. Snap shots of Θ for the D1 rotating waves at F = 0.35 and R as indicated. There
are 8 positive and 8 negative contour levels, in the range Θ ∈ [−0.4, 0.4], with black being the
most negative and white the largest positive in the grey scale.
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Figure 14. Rotating wave solutions D1, characterized by (a) the mid-cylinder temperature
Θm and (b) the precession frequency ωp , plotted as functions of R, for F ∈ [0.28, 0.35] in steps
of 0.01. Computed solutions are indicated by the symbols •.

of the precession of the central plume increases, the cold spot moves away from the
centre, as can be observed in figure 11. The precession of the D1 rotating waves is
retrograde and increases with R, as shown in figure 14(b).

Increasing the Froude number, the rotating waves D1 disappear in a saddle-node
bifurcation FD1. In exactly the same manner as discussed in § 5.1, a supercritical
secondary Hopf bifurcation where the periodic solution D1 loses stability emerges
from the fold-Hopf bifurcation point FH1. This secondary Hopf bifurcation becomes
subcritical and very close to the fold-Hopf point, resulting in the emergence of the
saddle-node curve FD1. With so many eigenvalues very close to zero in this regime, it
is almost impossible to compute solutions very close to the fold-Hopf point FH1. We
have represented the unexplored connection of the saddle-node curve FD1 with the
fold-Hopf point as a dotted line in figure 12.

Decreasing F at constant R, the rotating waves D1 undergo a subcritical secondary
Hopf bifurcation along the curve labelled sHD1 in figure 12. This curve emerges from
the double-Hopf point dH13. A description of the double-Hopf bifurcation and the
quasi-periodic states emerging at the secondary Hopf bifurcation is presented in the
following section.
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Figure 15. From the double-Hopf bifurcation dH13, a stable quasi-periodic solution QP
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a secondary Hopf bifurcation sHD3 becoming a D3 rotating wave. Between the two SNIC
curves, QP becomes a locked mixed-mode L13, a rotating wave solution. The symbols on the
dashed line are the loci of the D1 states shown in figure 16.

5.3. Double-Hopf bifurcation dH13

The double-Hopf bifurcation dH13 plays a central role in the organization of the
dynamics of the downwelling branch solutions. As shown in figure 15, a number of
different bifurcation curves meet at dH13: the two Hopf curves, H 1

D0 and H 3
D0, and the

two secondary Hopf curves sHD1 and sHD3 (these have already been described earlier),
as well as a saddle-node curve of quasi-periodic solutions (not yet analysed). From the
different scenarios of the double-Hopf bifurcation described in standard textbooks
(e.g. Kuznetsov 2004), the precise scenario corresponding to dH13 cannot be found.
This is due to exactly the same reason as has already been observed in the two fold-
Hopf bifurcations FH1 and FH3: the secondary Hopf bifurcation curves emerging
from these codimension-two points are supercritical, but they become subcritical
very close to the codimension-two point. As a result, the normal-form analysis is
valid only in a very narrow parameter region around the double-Hopf point; this
type of behaviour has been observed in diverse dynamical problems (Wittenberg &
Holmes 1997). Although the codimension-two points play a central role as organizing
centres for the dynamics, in a real problem the dynamics may differ very quickly
from the dynamics predicted by the local normal-form analysis. This problem has
been generally observed with many reduced low-dimensional models (normal forms,
Ginzburg–Landau equations, etc.). Although these models are very useful because they
predict the different states that emerge from a given bifurcation, only the solution
of the full problem (direct numerical simulation of the Navier–Stokes equations in
our case) can produce the global picture, the interconnections between the different
organizing centres, and determine the region of validity of the reduced models (e.g.
see Lopez, Marques & Shen 2004).

The double-Hopf dH13 corresponds to the simple scenario described in Kuznetsov
(2004), termed type II. In the region delimited by the secondary Hopf curves sHD1

and sHD3, the rotating waves D1 and D3 are both unstable and a quasi-periodic
mixed-mode QP is stable. Very close to dH13 the curve sHD1 is supercritical, and
the precise point where it becomes subcritical and the saddle-node of quasi-periodic
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(a) R = 1.55 × 104 (b) R = 1.70 × 104 (c) R = 1.85 × 104 (d ) R = 2.00 × 104

Figure 16. Snap shots of Θ for the mixed-mode solutions at (a) R =1.55 × 104 (QP ), (b)
R = 1.70 × 104 (L13), (c) R = 1.85 × 104 (QP ) and (d) R = 2.00 × 104 (QP ), all at F = 0.30.
There are eight positive and eight negative contour levels, in the range Θ ∈ [−0.4, 0.4], with
black being the most negative and white the largest positive in the grey scale. The loci of these
solution in (R,F ) space are indicated in figure 15. The movies available on-line animate these
solutions.

solutions FQL is born has not been determined, for the same reasons as in the fold-
Hopf bifurcations FH1 and FH3. The connection between sHD1, FQL and dH1 shown
in figure 15 is purely schematic.

The QP state is a mixed mode originating at the double-Hopf bifurcation for D1
and D3. The region of existence is delimited by the secondary Hopf curves. The QP
state has the m =1 and m =3 components quite well separated in physical space,
since the m =3 component primarily corresponds to the D3 ‘wall mode’ state and D1
is a precession mode of the D0 axial plume. The structure of the mixed mode can
be observed in figure 16, showing the plumes close to the wall and the central plume
precessing off-centre (the mixed-mode dynamics can be fully appreciated in the online
movies). The loci in (R, F ) space of the four snapshots of QP are indicated by the
symbols ◦ on the dashed line in figure 15.

5.4. Locking on the QP

The quasi-periodic QP synchronizes to a mixed-mode solution whose m = 1 and m = 3
Fourier components are locked to the same precession frequency L13, between the
two curves labelled SNIC l and SNIC u in figure 15. The synchronized L13 is robust
and stable over an extensive region of parameter space, with 1.6 × 104 <R < 1.8 × 104

and F < 0.33 (at least down to the smallest F = 0.25 which has been systematically
explored here), as illustrated in figure 15. The bifurcation from QP to L13 is a saddle-
node-on-an-invariant-circle (SNIC) bifurcation. Figure 17(a) is a schematic diagram
of a SNIC bifurcation. Before the bifurcation there exists a stable limit cycle. At the
bifurcation a saddle-node appears on the cycle. After the bifurcation the saddle-node
splits into two fixed points, one stable and the other unstable, destroying the limit
cycle (its remnants are the stable and unstable manifolds of the two fixed points). In
our problem, we do not have a limit cycle, but a quasi-periodic solution on a two
torus; but the dynamics on a Poincaré section of the torus is the same as the dynamics
just described for the SNIC bifurcation, as illustrated in figure 17(b): before the SNIC
bifurcation, there is a a quasi-periodic solution whose intersections with the Poincaré
section produce an invariant cycle. The intersection points of a quasi-periodic orbit
with the Poincaré section drift on the invariant cycle, densely filling it. After the
SNIC bifurcation, a pair of synchronized periodic states, one stable (L13) and the
other unstable, correspond to the stable and unstable fixed points on the Poincaré
section.
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(a)

(b)

Figure 17. (a) Schematic diagram of a SNIC bifurcation. (b) Schematic diagram of a SNIC
bifurcation on a two-torus; the Poincaré section depicted displays the behaviour described in
(a).
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Figure 18. Time series of (a) precession frequencies and (b) kinetic energies of the m= 1 and
m= 3 azimuthal components of QP at R = 1.85 × 104 and F =0.30.

The precession frequencies of the Fourier modes m = 1 and 3 of the quasi-periodic
solutions QP (measured using the technique described at the end of § 2) change in
time. This is because a QP solution is no longer a rotating wave with a constant-in-
time precession rate. The interaction between the wall mode and the central plume
results in precession frequencies ω1 and ω3 varying in time as shown in figure 18(a)
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Figure 19. (a) Variation of the modulation period τQP with R for various F as indicated; in

(b) the data is plotted as τ−2
QP , showing the typical scaling of the frequency in the neighbourhood

of SNIC bifurcations.

for the QP solution at R =1.85 × 104 and F = 0.30. The corresponding mean values
and variance are ω1 = − 6.36 ± 1.27 and ω3 = −2.24 ± 0.75. Note that the variances
are large since the local-in-space precession frequencies are different near the wall
and near the axis. The temporal variations in ω1 and ω3 are periodic, as illustrated in
figure 18(a), and both have the same frequency ωQP . Figure 18(b) shows the temporal
variation in the kinetic energies associated with the Fourier components m = 1 and
3 of the same quasi-periodic solution; they have exactly the same frequency ωQP .
For a rotating wave, the energies of the Fourier components are constant, but for
modulated rotating waves such as QP, they are periodic. This frequency must be an
integer multiple of the frequency difference between the two interacting modes, and
indeed this is the case here: ωQP =3(ω̄3 − ω̄1) = 12.36, where ω̄1 and ω̄3 are the time
averages of ω1 and ω3.

The mean precession frequencies ω̄1 and ω̄3 vary substantially in parameter space.
When the two precession frequencies approach a rational ratio ω̄1/ω̄3 = p/q , with
small integers p and q , the QP state undergoes a SNIC bifurcation leading to a
synchronized mixed mode. This is illustrated in figure 19(a), showing the period
τQP = 2π/ωQP as a function of R for different F values. The period goes to
infinity at the SNIC l and SNIC u bifurcation curves shown in figure 15. Between
the SNIC curves, a periodic solution is observed, corresponding to a locking
ω1/ω3 = 1/3. Approaching the bifurcation curves, the period goes to infinite following
the law τQP ∝ |R − Rcrit |−1/2, typical of saddle-node bifurcations, as shown in
figure 19(b).

Typical examples of QP and locked L13 states are shown in figure 16. They all
look the same because the snapshots lack the temporal evolution information. From
the movies available in the online version, it is evident that the m =1 and m = 3
components of QP are well-separated spatially on the low-R side of the locking
region. On the high-R side of the locking region, the coupling between the m =1 and
m =3 components is much stronger. At low R before the SNIC l bifurcation, during
the time evolution, the central plume attaches successively to each of the three plumes
close to the wall in a prograde fashion. For the locked mixed mode, the central plume
remains attached to one of the wall plumes and the pattern as a whole precesses
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Figure 20. Space–time diagram of Θ(r = 1, z = 0) for the mixed-mode solutions at (a)
R = 1.55 × 104 (QP ), (b) R = 1.70 × 104 (L13), (c) R = 1.85 × 104 (QP ) and (d) R = 2.00 × 104

(QP ), all at F =0.30. The grey scales are from cold (black) to hot (white) in the range
Θ ∈ [−0.3, 0]. The accompanying movies in the online version are animations of these three
states, showing contour plots Θ in a horizontal cross-section at mid-height.

uniformly; L13 is a rotating wave. For high R, following the SNIC u bifurcation, the
central plume successively attaches to the wall plumes, but now in a retrograde fashion
(relative to the global retrograde precession of the wall modes). This behaviour is also
evident in the space–time diagrams in figure 20, showing the same four solutions as
in figure 16 and in the online movies. These diagrams show the temperature at mid-
height on the sidewall as a function of the angle θ (vertical axis) and time (horizontal
axis). A vertical cut shows the instantaneous width of the sidewall plumes. Only
the locked state in figure 20(b) exhibits straight lines, corresponding to the uniform
precession of the rotating wave; note that one of the wall plumes is thicker, the one
with the central plume attached. The other space–time diagrams show variations in
the slope due to the successive attachment of the central plume to alternate sidewall
plumes. The effect is most intense at high R. Another salient feature is the reduction
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in the mean precession frequency with increasing R, seen as a decrease in the slope in
the space–time diagrams. This trend is consistent with the decrease in the precession
frequencies of C3 and D3 as R is increased (see figure 6); the mean precession seen
in the space–time diagrams corresponds to the m =3 component of the mixed mode
which comes from the secondary Hopf bifurcation of C3/D3.

Synchronization, or locking, on a 2-torus via a SNIC bifurcation occurs
spontaneously in a wide variety of flows, for example, Taylor–Couette (Lopez
& Marques 2003; Abshagen et al. 2005a ,b, 2008), Rayleigh–Bénard convection
(Tuckerman & Barkley 1988), rotating convection (Lopez, Rubio & Marques
2006) and modulated rotating convection (Rubio, Lopez & Marques 2008). While
synchronization is often associated with low-order resonance points on the Neimark–
Sacker bifurcation curve at which a 2-torus state is born opening up into Arnold’s
tongues (i.e. resonance horns, regions where the flow on the 2-torus is periodic), this
is not the case for the examples just cited, nor for the locked state found here. In fact,
the secondary Hopf bifurcation (it is not the generic Neimark–Sacker bifurcation, as
QP is a relative periodic orbit bifurcating from relative equilibria, the rotating waves
D1 and C3/D3) cannot have resonance horns emanating from them (Rand 1982;
Krupa 1990), and we do not find any such resonances. The synchronization of QP
to L13, however, is due to a resonance between the m =1 and m =3 components of
QP, which manifests in a parameter regime where the precession frequencies of the
two components are similar. The SNIC curves are far removed in parameter space
from the secondary Hopf curves sHD1 and sHD3, and the locking region is bounded
at high F ≈ 0.33 by a saddle-node bifurcation FQL of limit cycles (inside the locking
region) and of 2-tori (outside the locking region).

6. Discussion and conclusion
In this study, we have found a large variety of states and bifurcations. Considering

only the stable states, we have found two steady axisymmetric states C0 and D0,
five rotating waves C2, C3, D1, D3 and L13 and a quasi-periodic solution QP ; a
total of eight stable states, some of them coexisting, in the explored parameter region
(R, F ) = [8 × 103, 2.2 × 104] × [0.25, 0.60]. These states appear or change stability at
a variety of codimension-one bifurcations, 16 in total. We have also found nine
codimension-two bifurcations that act as organizing centres for the dynamics. Two
of these bifurcations play an important role: the cusp bifurcation Cusp, where the
centrifugal and downwelling branches are connected, and the double-Hopf bifurcation
dH13 of the downwelling branch, which is the origin of the quasi-periodic and
locking dynamics. Figure 21(a) shows a wide region of the parameter space that
includes most of these bifurcations, with the codimension-two points indicated by the
symbols •.

With increasing Froude number, the dynamics becomes progressively simpler, and
for F � 0.6 only the steady axisymmetric state C0 (the centrifugal branch) remains.
In contrast, on decreasing F the complexity of the dynamics increases. In fact, the
limit F → 0 is problematic, at least in two senses: first, it is not possible to have
F =0 while keeping a finite value of the Coriolis number Ω , because both numbers
have the rotation rate as a factor. The second reason is the increase in complexity
of the dynamics as F → 0; at larger aspect ratios this results in the chaotic KL
dynamics. As such, it is convenient to represent the regime diagram in terms of
the inverse Froude number F −1 = Ri, which is the thermal Richardson number. In
this way we obtain figure 21(b), showing a simple basic state C0 for small R and
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Figure 21. (a) Bifurcation curves found in the range (R,F ) = [12 000, 22 000] × [0.25, 0.33],
and (b) the same regime diagram but in terms of F −1 for (R,F −1) = [8 × 103, 2.2 ×
104] × [1.6, 4.0]. Bifurcation diagrams for the two one-parameter paths depicted as grey
lines in part (b) are shown in figure 22.

Ri, and a variety of bifurcations to more and more complex flows on increasing R

and Ri.
In order to illustrate the variety of states and the complexity of their bifurcations

and interconnections, two one-dimensional paths, one at fixed R = 1.8 × 104 and the
other at fixed F = 0.32, are considered. Figure 22 shows the corresponding bifurcation
diagrams along these paths. The R =1.8 × 104 bifurcation diagram (figure 22a)
shows the centrifugal and downwelling branches, that are clearly separated. C0
exists up to Ri → 0, while D0 is born at the saddle-node curve FD0. In fact,
the two branches remain disconnected on this path until larger values of Ri are
reached, where the branches labelled a and b in figure 22(a) meet at a saddle-node
bifurcation. The bifurcation diagram at F = 0.32, shown in figure 22(b), displays
the complex interconnections between both branches. Here, we also observe two
apparently disconnected small branches, in the upper part of the diagram. However,
they reconnect at larger R: the two C3 branches meet at a saddle-node point beyond
the region labelled a, and C2 and C3 both emerge from the double-Hopf point dH23

beyond the region labelled b.
In both bifurcation diagrams, only states computed in this paper and in the previous

one (Marques et al. 2007) have been displayed; it is very likely that additional unstable
branches exist. Note that in both bifurcation diagrams there are regions in parameter
space where four different solutions (D1, C2, C3 and QP ) coexist and are stable. This
multiplicity of coexisting states is typical in small aspect ratio convection; see Hof,
Lucas & Mullin (1999) for experiments on non-rotating convection and Boronska
& Tuckerman (2006) numerically computed many of these states. The review article
Gelfgat & Bar-Yoseph (2004) discusses many issues dealing with multiplicity of states.
It is worth noting, however, that in these examples, a primary source of the multiplicity
is the presence of symmetries; for example, in the first two cases the symmetry group
of the problem is O(2) × Z2. In our case, there is much less symmetry, only the
rotational symmetry around the cylinder axis SO(2), and the multiplicity of states
comes about not only from the symmetry but also from the competition between the
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Figure 22. Bifurcation diagrams at (a) R = 1.8 × 104 and (b) F = 0.32, corresponding to two
one-parameter paths through the (R,F ) regime diagram, depicted as grey lines, in figure 21.

three independent forces of comparable magnitude in the regime studied: Coriolis,
gravitational and centrifugal buoyancies.

Another important fact that is evident from figure 21(b) is that for R � 1.4157 × 104

the first bifurcations encountered on increasing the Richardson number Ri = F −1 are
all subcritical. Therefore, the linear stability analysis of the basic state is not of much
use in determining what states will be observed in an experiment. At R = 2.0 × 104 for
example, linear stability gives that the basic state C0 becomes unstable at Ri ≈ 3.32,
whereas there are three additional stable rotating waves that appear at much smaller
Ri: D1 at Ri ≈ 1.74 (saddle-node FD1), C2 at Ri ≈ 2.73 (saddle-node FC2), and C3
at Ri ≈ 2.95 (saddle-node F u

C3).
The solutions we have observed so far, for F � 0.25, are steady states, rotating

waves or quasi-periodic solutions with two independent frequencies. This is in contrast
with what happens at larger γ in the absence of centrifugal term (F = 0), where KL
chaotic dynamics is observed. In the present problem, we have computed the solution
of the Navier–Stokes equations at F =0 and R =2.0 × 104, using as initial condition
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Figure 23. (a) Space–time diagram of Θ(r = 1, z =0) for T3 R = 2.0 × 104 at F = 0. The grey
scales are from cold (black) to hot (white) in the range Θ ∈ [−0.31, 0.26]. (b) Snap shot of Θ
for T3 in a horizontal cross-section at mid-height. The accompanying movie 5 in the online
version is an animations of this state.

the QP solution at F = 0.25 and R = 2.0 × 104. The space–time diagram of this
solution, T3, is presented in figure 23(a); since the space–time diagram shows the
temperature deviation Θ at the wall, only slight non-periodic deviations from straight
lines are observed. In figure 23(b), contours of Θ at mid-height are shown, and the
accompanying movie 5 in the online version is an animation of this state over 10
thermal times. This state is substantially different from the QP solutions shown in
figure 20. The downwelling plume has disappeared, the wall mode plumes penetrate
deeper into the interior, and there is a large and almost straight convection roll
close to a diameter of the circular section. From the movie, we observe that this roll
becomes unstable to another roll at 60◦, which in turn becomes unstable to another
roll at 60◦, and so on. This dynamic is very reminiscent of the KL dynamics reported
at larger γ in the limit Ri → ∞ (F = 0). A detailed analysis of the interplay of the
KL dynamics in the bulk and the thermal plumes at the wall for γ = 4 has been
recently reported in Marques & Lopez (2008). The dynamic here is similar, but due
to the small aspect ratio, only a single convective roll in the interior of the container
is observed. Due to this small aspect ratio, we have been able to analyse the variety
of states that appear for F �= 0 as the number of such states is moderate. At γ =1
only two stable wall modes have been observed, with azimuthal wavenumbers m =2
(C2) and m =3 (C3 and D3), whereas for γ = 4 there are 26 Eckhaus–Benjamin–Feir
stable wall modes (with m ∈ [10, 35]) that exist before the onset of bulk modes (Lopez
et al. 2007; Marques & Lopez 2008).

The KL dynamics is chaotic, and in order to see if our state T3 also exhibits
chaotic behaviour, we have plotted in figure 24 time series of the energies of the first
four Fourier modes and the Nusselt number of QP and T3. Since QP only has two
frequencies, and one is associated to the precession around the cylinder axis, all these
functions are periodic for QP. In contrast, the plots for T3 show that it has at least
one additional frequency; it is a quasi-periodic (or weakly chaotic) state with at least
three independent frequencies (a three torus). Table 1 compares the time-averaged
values of the five quantities depicted in figure 24 for T3, QP and also for the rotating
waves C2 and D1 and the basic (steady and axisymmetric) state C0, all at the same
Rayleigh number R = 2.0 × 104, but differing F . This table shows that the energy
shifts from the m =0 mode (axisymmetric component), which is dominant at large
F , towards the non-zero modes on decreasing F ; the non-axisymmetric modes are
strongly dominant at F = 0. The heat flux is also reduced with increasing Froude
number. This further supports the conclusions drawn from the results presented
in this paper, and summarized in figure 21, that centrifugal effects primarily lead
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T3: F = 0 QP : F = 0.3 C2: F = 0.35 D1: F = 0.35 C0: F = 0.4

E0 34.77 ± 5.40 212.4 ± 3.3 263.6 268.2 357.8
E1 2.35 ± 0.84 3.89 ± 0.39 0 4.449 0
E2 0.318 ± 0.110 0.692 ± 0.418 13.462 0.0959 0
E3 66.67 ± 1.17 10.13 ± 0.36 0 0.0013 0
Nu 1.379 ± 0.0165 1.0838 ± 0.0163 1.1306 1.0805 1.049

Table 1. Table comparing T3, QP, C2, D1 and C0, showing the mean ± standard deviations
in the time-dependent energies of the first four Fourier modes and the Nusselt number, all at
R = 2.0 × 104 and F as indicated (note that C0 is a steady state and C2 and D1 are rotating
waves, so that their energies and Nu are constant).

(a) QP at R = 2 × 104, F = 0.3 (b) T 3 at R = 2 × 104, F = 0
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Figure 24. Time series of the energies of the first four Fourier modes E0, E1, E2 and E3, and
the Nusselt number Nu of (a) QP at F = 0.3 and (b) T3 at F = 0, both at R = 2 × 104.

to the axisymmetrization of the flow in regimes where the centrifugal buoyancy
dominates.
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Appendix. Notation for states and bifurcations

States

Name Branch Description

C0 Centrifugal Steady axisymmetric
C2 Centrifugal Rotating wave m =2 wall mode
C3 Centrifugal Rotating wave m =3 wall mode
D0 Downwelling Steady axisymmetric
D1 Downwelling Rotating wave m =1 bulk mode
D3 Downwelling Rotating wave m =3 wall mode
QP Downwelling Quasi-periodic mixed mode m =1 & 3
L13 Downwelling Rotating wave mixed mode m =1 & 3
T3 — Quasi-periodic (or weakly chaotic) with

at least three independent frequencies

Codimension-one bifurcations

Name Description

FD0 Fold of D0
FD1 Fold of D1
FD3 Fold of D3
FC2 Fold of C2
F l

C3 Fold of C3, lower branch
F u

C3 Fold of C3, upper branch
FQL Fold of QP or L13

H 2
C0 Hopf C0 → C2

H 3
C0 Hopf C0 → C3

H 1
D0 Hopf D0 → D1

H 3
D0 Hopf D0 → D3

sHC2 Secondary Hopf C2
sHD1 Secondary Hopf D1 → Q13
sHD2 Secondary Hopf D2 → Q13
SNIC l Quasi-periodic QP → locking L13, lower branch
SNIC u Quasi-periodic QP → locking L13, upper branch

Codimension-two bifurcations

Name Description

FH1 Fold-Hopf of D0 (FD0 and H 1
D0 collide)

FH3 Fold-Hopf of D0 (FD0 and H 3
D0 collide)

FHC2 Fold-Hopf of C2 (FC2 and sHC2 collide)
Cusp Cusp bifurcation (FD3 & F l

C3 collide)
dH23 Double-Hopf of C0 (H 2

C0 and H 3
C0 collide)

dH13 Double-Hopf of D0 (H 1
D0 and H 3

D0 collide)
B Bautin – degenerate Hopf H 3

C0

F l
SNIC Fold-SNIC bifurcation (SNIC l and FQL collide)

F u
SNIC Fold-SNIC bifurcation (SNIC u and FQL collide)
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